Mean Field Analysis of Deep Neural Networks
نویسندگان
چکیده
We analyze multilayer neural networks in the asymptotic regime of simultaneously (a) large network sizes and (b) numbers stochastic gradient descent training iterations. rigorously establish limiting behavior output. The limit procedure is valid for any number hidden layers, it naturally also describes loss. ideas that we explore are to take limits each layer sequentially characterize evolution parameters terms their initialization. satisfies a system deterministic integro-differential equations. proof uses methods from weak convergence analysis. show that, under suitable assumptions on activation functions times, recovers global minimum (with zero loss objective function).
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Mean-field theory of fluid neural networks
Jordi Delgado and Ricard V. Solé Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya, Campus Nord, Mòdul C6, Jordi Girona Salgado 1-3 08034 Barcelona, Spain Complex Systems Research Group, Departament de Fı́sica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Sor Eulàlia d’ Anzizu s/n, Campus Nord, Mòdul B4, 08034 Barcelona, Spain ~Received 27 May ...
متن کاملMean field theory for asymmetric neural networks.
The computation of mean firing rates and correlations is intractable for large neural networks. For symmetric networks one can derive mean field approximations using the Taylor series expansion of the free energy as proposed by Plefka. In asymmetric networks, the concept of free energy is absent. Therefore, it is not immediately obvious how to extend this method to asymmetric networks. In this ...
متن کاملMean-field theory of input dimensionality reduction in unsupervised deep neural networks
Deep neural networks as powerful tools are widely used in various domains. However, the nature of computations in each layer of the deep networks is far from being understood. Increasing the interpretability of deep neural networks is thus important. Here, we construct a mean-field framework to understand how compact representations are developed across layers, not only in deterministic random ...
متن کاملEvolutionary Visual Analysis of Deep Neural Networks
Recently, deep learning visualization gained a lot of attentions for understanding deep neural networks. However, there is a missing focus on the visualization of deep model training process. To bridge the gap, in this paper, we firstly define a discriminability metric to evaluate neuron evolution and a density metric to investigate output feature maps. Based on these metrics, a level-ofdetail ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 2022
ISSN: ['0364-765X', '1526-5471']
DOI: https://doi.org/10.1287/moor.2020.1118